Dissipativity and passivity analysis for discrete-time complex-valued neural networks with time-varying delay
نویسندگان
چکیده
Abstract: In this paper, we consider the problem of dissipativity and passivity analysis for complex-valued discrete-time neural networks with time-varying delays. The neural network under consideration is subject to time-varying. Based on an appropriate Lyapunov–Krasovskii functional and by using the latest free-weighting matrix method, a sufficient condition is established to ensure that the neural networks under consideration is strictly (, ,)-dissipative. The derived conditions are presented in terms of linear matrix inequalities. A numerical example is presented to illustrate the effectiveness of the proposed results.
منابع مشابه
FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS
This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملDelay-Range-Dependent Global Robust Passivity Analysis of Discrete-Time Uncertain Recurrent Neural Networks with Interval Time-Varying Delay
This paper examines a passivity analysis for a class of discrete-time recurrent neural networks DRNNs with norm-bounded time-varying parameter uncertainties and interval time-varying delay. The activation functions are assumed to be globally Lipschitz continuous. Based on an appropriate type of Lyapunov functional, sufficient passivity conditions for the DRNNs are derived in terms of a family o...
متن کاملGlobal Dissipativity on Uncertain Discrete-Time Neural Networks with Time-Varying Delays
The problems on global dissipativity and global exponential dissipativity are investigated for uncertain discrete-time neural networks with time-varying delays and general activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing linear matrix inequality technique, several new delay-dependent criteria for checking the global dissipativity and global exponen...
متن کاملRobust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015